
 Higher order couplings in magnetized brane models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP06(2009)080

(http://iopscience.iop.org/1126-6708/2009/06/080)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:13

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/06
http://iopscience.iop.org/1126-6708/2009/06/080/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
6
(
2
0
0
9
)
0
8
0

Published by IOP Publishing for SISSA

Received: April 1, 2009

Accepted: June 8, 2009

Published: June 25, 2009

Higher order couplings in magnetized brane models

Hiroyuki Abe,a Kang-Sin Choi,b Tatsuo Kobayashib and Hiroshi Ohkib

aDepartment of Physics, Tohoku University,

Sendai 980-8578, Japan
bDepartment of Physics, Kyoto University,

Kyoto 606-8502, Japan

E-mail: abe@tuhep.phys.tohoku.ac.jp,

kschoi@gauge.scphys.kyoto-u.ac.jp,

kobayash@gauge.scphys.kyoto-u.ac.jp, ohki@scphys.kyoto-u.ac.jp

Abstract: We compute three-point and higher order couplings in magnetized brane mod-

els. We show that higher order couplings are written as products of three-point couplings.

This behavior is the same as higher order amplitudes by conformal field theory calculations

e.g. in intersecting D-brane models.

Keywords: Strings and branes phenomenology, Phenomenology of Field Theories in

Higher Dimensions

ArXiv ePrint: 0903.3800

c© SISSA 2009 doi:10.1088/1126-6708/2009/06/080

mailto:abe@tuhep.phys.tohoku.ac.jp
mailto:kschoi@gauge.scphys.kyoto-u.ac.jp
mailto:kobayash@gauge.scphys.kyoto-u.ac.jp
mailto:ohki@scphys.kyoto-u.ac.jp
http://arxiv.org/abs/0903.3800
http://dx.doi.org/10.1088/1126-6708/2009/06/080


J
H
E
P
0
6
(
2
0
0
9
)
0
8
0

Contents

1 Introduction 1

2 Set-up 2

3 Three-point coupling 4

4 Higher order coupling 7

4.1 Four-point coupling 7

4.2 Generic L-point coupling 9

5 Intersecting D-brane models 13

6 Conclusions 16

1 Introduction

Extra dimensional field theories, in particular string-derived ones, play important roles

in particle physics and cosmology. It is one of keypoints how to realize four-dimensional

chiral theories as low-energy effective theories from such higher dimensional theories. In-

troducing constant magnetic fluxes in extra dimensions is one of interesting scenarios to

realize four-dimensional chiral theories [1–10]. Indeed, several models have been studied in

field theories and string theories. Furthermore, magnetized D-brane models are T-duals of

intersecting D-brane models, and various interesting models have been constructed within

the framework of intersecting D-brane models [4–6, 11–13].1 Orbifolds with magnetic fluxes

and other non-trivial backgrounds with magnetic fluxes have also been studied [15–18].

In magnetic background, zero-modes are quasi-localized and the number of zero modes

are determined by a size of background magnetic flux. Such a behavior of zero-modes

would be important in application for particle phenomenology. Couplings among those

zero-modes in four-dimensional effective field theories are obtained as overlap integrals of

zero-mode profiles in the extra dimensional space. Thus, if they are localized far away

from each other in the extra dimensional space, their four-dimensional couplings would be

suppressed and such couplings would be useful to explain suppressed couplings in particle

physics such as Yukawa couplings of light quarks and leptons. Hence, computation of

those couplings is quite important. Indeed, three-point couplings have been calculated

and their results were found to coincide with three-point couplings in intersecting D-brane

models [7, 19]. (See also [20].) Furthermore, three-point couplings could lead to realistic

Yukawa matrices. (See e.g. [18].)

1 See for a review [14] and references therein.
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For further phenomenological applications, it is also important to compute higher or-

der couplings. Indeed, higher order couplings as well as three-point couplings have been

computed within the framework of intersecting D-brane models [21, 22] and heterotic orb-

ifold models [23–27] by using conformal field theory (CFT) technique. Our purpose in this

paper is to compute higher order couplings in magnetized brane models. We carry out

overlap integrals of three or more wavefunctions in the extra dimensional space in order to

obtain higher order couplings in four-dimensional effective field theories. It will be shown

that such higher order couplings are written as products of three-point couplings. This be-

havior is the same as CFT calculations in intersecting D-brane models as well as heterotic

orbifold models.

This paper is organized as follows. In section 2, we show our set-up by reviewing

ref. [7]. In section 3, we reconsider the computation of the three-point couplings. Its result

have been obtained in [7], but here we pay attention to the selection rules and rewrite

the result, which is convenient to our purpose. In section 4, we compute the four-point

couplings and we study its extensions to higher order couplings. In section 5, we give

comments on comparison with those couplings in intersecting D-brane models. Section 6

is devoted to conclusion and discussion.

2 Set-up

We consider dimensional reduction of ten-dimensional N = 1 super Yang-Mills theory with

U(N) gauge group [28], on a six torus in Abelian magnetic flux background. We factorize

the six-torus into two-tori (T 2)3, each of which is specified by the complex structure τd
and the area Ad = (2πRd)

2 Imτd where d = 1, 2, 3. From the periodicity of torus, the

background magnetic flux is quantized as [29]

Fzdz̄d =
2πi

Imτd









m
(d)
1 1N1

. . .

m
(d)
n 1Nn









, d = 1, 2, 3, (2.1)

where 1Na are the unit matrices of rank Na, m
(d)
i are integers and zd are the complex

coordinates. This background breaks the gauge symmetry U(N) →
∏n

a=1 U(Na) where

N =
∑n

a=1Na.

A magnetic flux in (4 + 2n) extra dimensions can give rise to chiral fermions in four

dimensions. Focusing on a submatrix consisting of two blocks,

Fzdz̄d,ab =
2πi

Imτd

(

m
(d)
a 1Na 0

0 m
(d)
b 1Nb

)

, (2.2)

the corresponding internal components ψn(z) of gaugino fields λ(x, z) have the form

λ(x, z) =
∑

n

χn(x) ⊗ ψn(z), ψn(z) =

(

ψaa
n (z) ψab

n (z)

ψba
n (z) ψbb

n (z)

)

, (2.3)
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where x denotes the coordinates of four-dimensional uncompactified space-times, R3,1. The

off-diagonal components of zero-modes of the Dirac equation transform as bifundamental

representations ψab ∼ (Na,Nb), ψba ∼ (Na,Nb) under SU(Na) × SU(Nb), where we omit

the subscript 0 corresponding to the zero-modes, n = 0. Since only either of the off-diagonal

components has exclusive zero-modes, depending on the sign of the relative magnetic flux

M (d) ≡ m
(d)
a −m

(d)
b , the spectrum is chiral; The positive helicity zero-mode provides CPT

conjugate to the one with negative helicity. With an appropriate gauge fixing, the zero-

modes on each d-th T 2 are written as [7]

ψj,M (d)

d (zd) = NM (d) eiπM (d)zdIm zd/(Im τd) ϑ

[

j/M (d)

0

]

(M (d)zd, τdM
(d)), (2.4)

for j = 1, . . . , |M (d)|, where the normalization factor NM is obtained as

NM (d) =

(

2Imτd|M
(d)|

A2
d

)1/4

. (2.5)

We have the |M (d)| zero-modes labelled by the index j. Note that the wavefunction for

j = k +M (d) is identical to one for j = k. They satisfy the orthonormal condition,
∫

d2zd ψi,M (d)

d (zd)
(

ψj,M (d)

d (zd)
)∗

= δij . (2.6)

The important part of zero-mode wavefunctions is written in terms of the Jacobi theta

function

ϑ

[

a

b

]

(ν, τ) =

∞
∑

n=−∞

exp
[

πi(n+ a)2τ + 2πi(n + a)(ν + b)
]

. (2.7)

It transforms under the symmetry of torus lattice and has several important properties [30].

One of them is the following product rule

ϑ

[

i/M1

0

]

(z1, τM1) · ϑ

[

j/M2

0

]

(z2, τM2)

=
∑

m∈ZM1+M2

ϑ

[

i+j+M1m
M1+M2

0

]

(z1 + z2, τ(M1 +M2))

× ϑ

[

M2i−M1j+M1M2m
M1M2(M1+M2)

0

]

(z1M2 − z2M1, τM1M2(M1 +M2)).

(2.8)

Here ZM is the cyclic group of order |M |, ZM = {1, . . . , |M |} where every number is defined

moduloM . Although this expression looks asymmetric under the exchange between i and j,

it is symmetric if we take into account the summation. By using the product property (2.8),

we can decompose a product of two zero-mode wavefunctions as follows,

ψi,M1

d (zd)ψj,M2

d (zd) =
NM1NM2

NM1+M2

∑

m∈ZM1+M2

ψi+j+M1m,M1+M2

d (zd)

× ϑ

[

M2i−M1j+M1M2m
M1M2(M1+M2)

0

]

(0, τdM1M2(M1 +M2)).

(2.9)
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In this paper, we calculate the generalization of Yukawa couplings to arbitrary order

L couplings

Yi1...iLχ iLχ+1···iLχ
i1(x) · · ·χiLχ (x)φiLχ+1(x) . . . φiL(x), (2.10)

with L = Lχ + Lφ, where χ and φ collectively represent four-dimensional components of

fermions and bosons, respectively. The system under consideration can be understood as

low-energy effective field theory of open string theory. The magnetic flux is provided by

stacks of D-branes filling in the internal dimension. The leading order terms in α′ are

identical to ten-dimensional super-Yang-Mills theory, whose covariantized gaugino kinetic

term gives the three-point coupling upon dimensional reduction [7, 19]. The higher order

couplings can be read off from the effective Lagrangian of the Dirac-Born-Infeld action with

supersymmetrization. The internal component of bosonic and fermionic wavefunctions

is the same [7]. Therefore it suffices to calculate the wavefunction overlap in the extra

dimensions

Yi1i2...iL = g10
L

∫

T 6

d6z
3
∏

d=1

ψi1,M1

d (z)ψi2,M2

d (z) . . . ψiL,ML

d (z), (2.11)

where g10
L denotes the coupling in ten dimensions.

3 Three-point coupling

In this section, we calculate the three-point coupling considering the coupling selection rule.

As we see later, the three-point coupling provides a building block of higher order couplings.

The gauge group dependent part is contracted by the gauge invariance, so that the

choice of three blocks ma,mb,mc in (2.1) automatically fixes the relative magnetic fluxes

(ma −mb) + (mb −mc) = (ma −mc), and M1 +M2 = M3, (3.1)

where M1 = ma − mb, M2 = mb − mc and M3 = ma − mc. Here every Mi is assumed

to be a positive integer. This relation is interpreted as the selection rule, in analogy of

intersecting brane case [31, 32], to which we come back later. If it is not satisfied, there is no

corresponding gauge invariant operator in ten dimensions. In terms of quantum numbers

the coupling has the form (Na,Nb,1) · (1,Nb,Nc) · (Na,1,Nc) under U(Na) × U(Nb) ×

U(Nc).

The internal part including the wavefunction integrals on the d-th T 2 gives

yijk̄ =

∫

d2z ψi,M1(z)ψj,M2(z)
(

ψk,M3(z)
)∗
. (3.2)

The complete three-point coupling is the direct product of those in d = 1, 2, 3 and g10
3 .

For the moment we neglect the normalization factors NM , and consider two-dimensional

wavefunctions, omitting the extra dimensional index d. By using the relation (2.9), we

can decompose the product of the first two wavefunctions ψi,M1(z)ψj,M2(z) in terms of

ψk,M3(z) and we apply the orthogonality relation (2.6). Then, we obtain

yijk̄ =
∑

m∈ZM3

δi+j+M1m,k ϑ

[

M2i−M1j+M1M2m
M1M2M3

0

]

(0, τM1M2M3), (3.3)
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where the numbers in the Kronecker delta is defined modulo M3. This expression is sym-

metric under the exchange (i,M1) ↔ (j,M2).

For gcd(M1,M2) = 1, we solve the constraint from the Kronecker delta δi+j+M1m,k,

i+ j − k = M3l −M1m, m ∈ ZM3, l ∈ ZM1 . (3.4)

Using Euclidean algorithm, it is easy to see that, in the relatively prime case gcd(M1,M2) =

1, there is always a unique solution for given i, j, k. This situation is the same as one in in-

tersecting D-brane models [31, 32]. The argument of the theta function in eq. (3.3) becomes

M2i−M1j +M1M2m

M1M2(M1 +M2)
=
M2k −M3j +M2M3l

(M3 −M2)M2M3
. (3.5)

Therefore, the three-point coupling is written as

yijk̄(l) = ϑ

[

M2k−M3j+M2M3l
M2M3(M3−M2)

0

]

(0, τ(M3 −M2)M2M3), (3.6)

where l is an integer related to i, j, k through (3.4). This is called the 2-3 picture, or the

j-k picture, where the dependence on i and M1 is only implicit.

In the case with a generic value of gcd(M1,M2) = g, we can show

yijk̄ =

g
∑

n=1

ϑ

[

M2k−M3j+M2M3l
M1M2M3

+ n
g

0

]

(0, τM1M2M3). (3.7)

The point is that, for a given particular solution (i, j, k), the number of general solutions

satisfying eq. (3.4) is equal to g. We can use a similar argument as above, now consid-

ering ZM1/g and ZM3/g instead of the original region. There is a unique pair (l,m) in

(ZM1/g,ZM3/g) satisfying the constraint (3.4), i.e. ,

i+ j − k

g
=
M3

g
l −

M1

g
m. (3.8)

Obviously, when (l,m) is a particular solution, the following pairs,

(

l +
M1

g
,m+

M3

g

)

∈ (ZM1 ,ZM3), (3.9)

also satisfy the equation with the same right-hand side (r.h.s. ). Since ZM1 and ZM3 are

respectively unions of g identical copies of ZM1/g,ZM3/g, there are g different solutions.

This situation is the same as one in intersecting D-brane models [31, 32]. If we reflect the

shift (3.9) in (3.5), we obtain the desired result (3.7).

There can be Wilson lines ζ ≡ ζr + τζi, whose effect is just a translation of each

wavefunction [7]

ψj,M (z) → ψj,M (z + ζ), for all j. (3.10)

– 5 –
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i,M1

j,M2

k,M3

Figure 1. A three-point coupling provides a building block of higher order couplings. This di-

agram corresponds to the three-point coupling (3.12). The direction of an arrow depends on the

holomorphicity of the corresponding external state.

Thus the corresponding product for (2.8) is obtained as

ϑ

[

i/M1

0

]

((z + ζ1)M1, τM1) · ϑ

[

j/M2

0

]

((z + ζ2)M2, τM2)

=
∑

m∈ZM1+M2

ϑ

[

i+j+M1m
M1+M2

0

]

((M1 +M2)(z + ζ3), τ(M1 +M2))

× ϑ

[

M2i−M1j+M1M2m
M1M2(M1+M2)

0

]

(M1M2(ζ1 − ζ2)), τM1M2(M1 +M2)),

(3.11)

where M3 = M1 +M2 and ζ3M3 = ζ1M1 + ζ2M2.

Finally, we take into account the six internal dimensions T 2 × T 2 × T 2. Referring

to (2.11), essentially the full coupling is the direct product of the coupling on each two-

torus. The overall factor in (2.11) is the physical ten dimensional gauge coupling g10
3 = gYM,

since this is obtained by dimensional reduction of super Yang-Mills theory. Collecting the

normalization factors (2.5) from (2.9), the full three-point coupling becomes

Yijk̄ = gYM

3
∏

d=1

(

2Imτd
A2

d

M
(d)
1 M

(d)
2

M
(d)
3

)1/4

× exp
(

iπ(M
(d)
1 ζ

(d)
1 Imζ

(d)
1 +M

(d)
2 ζ

(d)
2 Imζ

(d)
2 +M

(d)
3 ζ

(d)
3 Imζ

(d)
3 )/Imτd

)

×

gd
∑

nd=1

ϑ





M
(d)
2 k−M

(d)
3 j+M

(d)
2 M

(d)
3 l

M
(d)
1 M

(d)
2 M

(d)
3

+ nd

gd

0



 (M
(d)
2 M

(d)
3 (ζ

(d)
2 − ζ

(d)
3 ), τdM

(d)
1 M

(d)
2 M

(d)
3 ).

(3.12)

Here the index d indicates that the corresponding quantity is the component in d-th direc-

tion. For later use, it is useful to visualize the three-point coupling like Feynman diagram

in figure 1.

– 6 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
0

4 Higher order coupling

4.1 Four-point coupling

We calculate the four-point coupling

yijkl̄ ≡

∫

d2z ψi,M1(z)ψj,M2(z)ψk,M3(z)
(

ψl,M4(z)
)∗
, (4.1)

and represent it in various ways. The main result is that the four-point coupling can

be expanded by three-point couplings. Thus by iteration, we can generalize it to higher

order couplings.

We consider the case without Wilson lines, since the generalization is straightforward.

The product of the first two wavefunctions ψi,M1(z)ψj,M2(z) in (4.1) is the same as in (2.9).

Again, we suppose M1 +M2 +M3 = M4. Then the product of the first three wavefunctions

ψi,M1(z)ψj,M2(z)ψk,M3(z) in (4.1) gives

∑

m∈ZM1+M2

∑

n∈ZM4

ψi+j+k+M1m+(M1+M2)n,M4(z)ϑ

[

M2i−M1j+M1M2m
M1M2(M1+M2)

0

]

(0, τM1M2(M1+M2))

× ϑ

[

M3(i+j+M1m)−(M1+M2)k+(M1+M2)M3n
(M1+M2)M3M4

0

]

(0, τ(M1 +M2)M3M4).

(4.2)

Now, we product the last wave function
(

ψl,M4(z)
)∗

in (4.1), acting on the first factor

in (4.2), yielding the Kronecker delta δi+j+k+M1m+(M1+M2)n,l. The relation is given modulo

M4, reflecting that i, j, k, l are defined modulo M1,M2,M3,M4, respectively. It is non-

vanishing if there is r such that

i+ j + k +M1m+ (M1 +M2)n = l +M4r. (4.3)

We solve the constraint equation in terms of n.

For gcd(M1,M2,M3) = 1, any coupling specified by (i, j, k, l) satisfies the constraint.

For a coupling yijkl̄, fixing (m, r) there is always a unique n satisfying the constraint. This

means that by solving the constraint equation in terms of n, we can remove the summation

over n in (4.2). The result is

yijkl =
∑

m∈ZM1+M2

ϑ

[

M2i−M1j+M1M2m
M1M2M

0

]

(0, τM1M2M) · ϑ

[

M3l−M4k+M3M4r
MM3M4

0

]

(0, τM3M4M),

(4.4)

where M = M1 +M2 = −M3 +M4. This form (4.4) is expressed in terms of only ‘external

lines’, i, j, k, l, and in the ‘internal line’ r is uniquely fixed by m from the relation (4.3).

This is to be interpreted as expansion in terms of three-point couplings (3.6). From the

property of the theta function, we have relations like yijk̄ = y∗ı̄̄k, etc. Thus we can write

yijkl̄ =
∑

m∈ZM1+M2

yijm̄(m) · ykml̄(r), (4.5)

– 7 –
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=  Σ
li

j k

s =  Σ t

i

j

l

k

Figure 2. A four-point coupling is decomposed into products of three-point couplings. It also has

‘worldsheet’ duality. We have another ‘u-channel’ diagram.

where m and r are uniquely related by the relation (4.3). Recall that three-point coupling

can be expressed in terms of ‘two external lines’ depending on the 2-3 ‘picture.’

The result (4.4) can be written by arranging the summation of quantum numbers

as follows,

yijkl =
∑

s∈ZM1+M2

ϑ

[

M2s−Mj+M2Mr
M1M2M

0

]

(0, τM1M2M) · ϑ

[

−Ml+M4s+MM4n
M3M4M

0

]

(0, τM3M4M).

(4.6)

Here, we rewrite (4.3)

i+ j +M1m = s+ (M1 +M2)r,

−k + l +M3r = s+ (M1 +M2)n, (4.7)

by introducing an auxiliary label s, defined modulo M = M1 +M2 = −M3 +M4. This is

uniquely fixed by other numbers from (4.3) and it can be traded with m. Thus we arrive

at the second form (4.6), which becomes

yijkl̄ =
∑

s∈ZM1+M2

yijs̄ · yksl̄. (4.8)

The second expression (4.6), explicitly depends on the ‘internal line’ s. It is useful to track

the intermediate quantum number s.

We saw that in the case gcd(M1,M2) = 1, there is a unique solution. Since we expand

higher order coupling in terms of three-point couplings, if any of them have degeneracies

as in (3.7), i.e., gcd(Mi,Mj) = gij > 1, we should take into account their effects. It

is interpreted that each three-point coupling contains a flavor symmetry Zgij
[33]. For

the four-point coupling with gcd(M1,M2) = g12 and gcd(M3,M4) = g34 we have also

gcd(g12, g34) = g = gcd(M1,M2,M3,M4), without loss of generality (see below). Em-

ploying the ‘intermediate state picture’, or the (j-s) × (s-l) picture, in the last expression

in (4.6), we have

∑

p∈Zg

∑

s∈ZM1+M2

ϑ

[

M2s−Mj+M2Mr
(M−M2)M2M + p

g

0

]

(0, τ(M −M2)M2M)

× ϑ

[

−Ml+M4s+MM4n
MM4(M4−M) + p

g

0

]

(0, τMM4(M4 −M)).

(4.9)

– 8 –
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It shows that the two symmetries Zg12 and Zg34 are broken down to the largest common

symmetry Zg, due to the constraint. Otherwise we cannot put together the vertices with

the common intermediate state s.

Reminding that we are examining the overlap of four wavefunctions, and it does not

depend on the order of product. If we change the order of the product in (4.1), namely

consider the product of the second and the third wavefunctions ψj,M2(z)ψk,M3(z) first,

we have differently-looking constraint relation which is equivalent to (4.3) undergoing

the decomposition,

j + k +M2m
′ = t+ (M2 +M3)r

′,

−i+ l +M1r
′ = t+ (M2 +M3)n

′. (4.10)

This looks like the ‘t-channel’ and we have

yijkl =
∑

t∈ZM′

ϑ

[

M3t−M ′k+M3M ′r′

(M ′−M3)M3M ′

0

]

(0, τ(M ′ −M3)M3M
′))

× ϑ

[

−M ′l+M1t+M ′M1n
M ′M1(M1−M ′)

0

]

(0, τM ′M1(M1 −M ′))

=
∑

t∈ZM′

yil̄t · yjkt̄,

(4.11)

with M ′ = −M1 + M4 = M2 + M3. The result has a behavior like ‘worldsheet’ duality

in those of Veneziano and Virasoro-Shapiro [34]. This means that, in decomposing the

diagram, the position of an insertion does not matter.

If we have Wilson lines, we just replace the three-point couplings by those with Wilson

lines (3.12).

4.2 Generic L-point coupling

We have seen that the four point coupling is expanded in terms of three-point couplings.

We can generalize the result to obtain arbitrary higher order couplings. The constraint

relations and the higher order couplings are always decomposed into products of three-point

couplings. It is easily calculated by Feynman-like diagram.

The decompositions (4.4), (4.6), (4.11) are understood as inserting the identity ex-

panded by the complete set of orthonormal eigenfunctions {ψi,M
n } as follows. For example,

we split the integral (4.1) as

yijkl̄ =

∫

d2zd2z′ ψi,M1(z)ψj,M2(z)δ2(z − z′)ψk,M3(z′)
(

ψl,M4(z′)
)∗
. (4.12)

Then, we use the complete set of orthonormal eigenfunctions {ψi,M
n } of the Hamiltonian

with a magnetic flux M . That is, they satisfy

∑

s,n

(

ψs,M
n (z)

)∗
ψs,M

n (z′) = δ2(z − z′). (4.13)
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Figure 3. Likewise, any amplitude with arbitrary external lines is decomposed into product of

three-point amplitudes.

We insert l.h.s. instead of the delta function δ2(z − z′) in (4.12). Since ψi,M1(z)ψj,M2(z) is

decomposed in terms of ψs,M1+M2
n (z), it is convenient to take M = M1 +M2 for inserted

wavefunctions
(

ψs,M
n (z)

)∗
ψs,M

n (z′). In such a case, only zero-modes of ψs,M
n (z) appear in

this decomposition. If we take M 6= M1 +M2, higher modes of ψs,M
n (z) would appear. At

any rate, when we take M = M1 +M2, we can lead to the result (4.6) and (4.5). On the

other hand, we can split

yijkl̄ =

∫

d2zd2z′ ψj,M2(z)ψk,M3(z)δ2(z − z′)ψi,M1(z′)
(

ψl,M4(z′)
)∗
, (4.14)

and insert (4.13) with M = M2 +M3. Then, we can lead to (4.11). Furthermore, we can

calculate the four-point coupling after splitting

yijkl̄ =

∫

d2zd2z′ ψi,M1(z)ψk,M3(z)δ2(z − z′)ψj,M2(z′)
(

ψl,M4(z′)
)∗
. (4.15)

How to split corresponds to ‘s-channel’, ‘t-channel’ and ‘u-channel’. Note that only zero-

modes appear in ‘intermediate states’, when we take proper values of M because of the

product property.

We have considered the four-point couplings with M1 + M2 +M3 = M4 for Mi > 0.

We may consider the case with M1 +M2 = M3 +M4 for Mi > 0, which corresponds to

yijk̄l̄ ≡

∫

d2z ψi,M1(z)ψj,M2(z)
(

ψk,M3(z)
)∗ (

ψl,M4(z)
)∗
. (4.16)

In order to consider both of this case and the previous case at the same time, we would

have more symmetric expression for the four-point coupling

yijkl =

∫

d2z ψi1,M1(z̃)ψi2,M2(z̃)ψi3,M3(z̃)ψi4,M4(z̃), (4.17)

by defining

ψi,−M (z̄) ≡
(

ψi,M (z)
)∗
, (4.18)

with

M1 +M2 +M3 +M4 = 0,

where some of Mi are negative, and z̃ = z for M > 0 and z̃ = z̄ for M < 0.

We can extend the above calculation to the L-point coupling,

yi1i2...iL ≡

∫

d2z

L
∏

j=1

ψij ,Mj(z̃), (4.19)

– 10 –
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i1,M1

i2,M2 i3,M3 i4,M4

i5,M5

s1,M1+M2

s2,M1+M2+M3

Figure 4. Five-point coupling. No more independent Feynman-like diagram for different insertion.

with the extension as in (4.18). We have then the selection rule

L
∑

j=1

Mj = 0, (4.20)

where some of Mj are negative. The constraint is given as

L
∑

j=1

(

ij +

(

j
∑

l=1

Ml

)

rj

)

= 0. (4.21)

Again, it shows the conservation of the total flavor number ij , reflecting the fact that each

ij is defined modulo Mj. We can decompose L-point coupling into (L − 1) and three-

point couplings

L−3
∑

j=1

(

ij +

(

j
∑

l=1

Ml

)

rj

)

+ iL−2 = s−KrL−1,

iL−1 + iL +ML−1rL−1 = −s−KrL−2, (4.22)

where

K =
L−2
∑

k=1

Mi = −ML−1 −ML, (4.23)

is the intermediate quantum number. Therefore if gcd(M1,M2, . . . ,ML) = 1, by induction

we see that there is a unique solution by Euclidean algorithm. By iteration

yi1i2...iL =
∑

s

yi1i2...iL−2s · ys̄iL−1iL , (4.24)

we can obtain the coupling including the normalization. Thus, we can obtain L-point

coupling out of (L− 1)-point coupling. Due to the independence of ordering, we can insert

(or cut and glue) any node.

As an illustrating example we show the result for the five-point coupling. We employ

s-channel-like insertions, by naming intermediate quantum numbers si as in figure 4. We

– 11 –
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have

yi1i2i3i4i5 =
5
∏

j=1

ϑ
[ij/Mj

0

]

(zMi, τMi)

=
∑

s1,s2

ϑ

[

M2s1−(M1+M2)i2+M2(M1+M2)l1
M2(M1+M2)(M1+2M2)

0

]

(0,M1M2(M1 +M2)τ)

× ϑ

[

(M1+M2)i3−M3s1+M3(M1+M2)l2
M3(M1+M2)(M1+M2+M3)

0

]

(0, (M1 +M2)M3(M1 +M2 +M3))

× ϑ

[

(M1+M2+M3)i4−M4s2+M4(M1+M2+M3)l3
M4(M1+M2+M3)(M1+M2+M3+M4)

0

]

(0,−(M4 +M5)M4M5τ),

(4.25)

where

s1 ∈ ZM1+M2, s2 ∈ ZM1+M2+M3 .

From the regular patterns of increasing orders, we can straightforwardly generalize the

couplings to arbitrary order.

Now, taking into account full six internal dimensions, as in three-coupling case (3.12),

we have various normalization factors besides the product of theta functions. Again, from

the product relation of theta function (2.8) we have

sLg
L−2
YM α′(L−4+Lχ/2)/2

×
3
∏

d=1

(

2Imτd
A2

d

∑

M
(d)
i >0

|M
(d)
i |

)− 1
4
(

2Imτd
A2

d

∑

M
(d)
i <0

|M
(d)
i |

)− 1
4 L
∏

i=1

(

2Imτd|M
(d)
i |

A2
d

)
1
4

.

(4.26)

Recall that Lχ is the number of fermions in the couplings (2.10). We have g10
L =

sLg
L−2
YM α′(L−4+Lχ/2)/2 in (2.11), where symmetric factor sL comes from higher order ex-

pansions of lower-level completion of Yang-Mills theory, having also an expansion param-

eter α′. In open string theory, it is the Dirac-Born-Infeld action, and it is unknown

beyond the quartic order in α′F [36]. The dependence of ten-dimensional gauge coupling

gYM and Regge slope α′ can be easily accounted by order counting [35]. Note that gYM

is dimensionful. This factor (4.26) is non-holomorphic in the complex structure τ and

complexified Kähler modulus α′J = B + iA/4π2, where Bzdz̄d is the antisymmetric tensor

field component in d-th two-torus. They are interpreted as originating from the Kähler

potential [7, 19]. The product
∏

M
1/4
i is the leading order approximation of Euler beta

function and its multivariable generalization, which is the property of dual amplitude.

As an example of full expressions, we show the four-point coupling among scalar

fields, Yijl̄m̄φ
iφj(φl)∗(φm)∗, where φi and (φl)∗ (φj and (φm)∗) correspond to the mag-

netic flux M
(d)
1 (M

(d)
2 ). For simplicity, we consider the case with vanishing Wilson lines
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and gcd(M1,M2) = 1. The full coupling Yijl̄m̄ is obtained as

Yijl̄m̄ = g2
YM

3
∏

d=1

(

2Imτd
A2

d

M
(d)
1 M

(d)
2

M
(d)
3

)1/2
∑

k∈Z
M

(d)
1

+M
(d)
2

y
(d)

ijk̄
(y(d))∗kl̄m̄, (4.27)

up to sL, where

y
(d)

ijk̄
= ϑ





M
(d)
2 k−M (d)j+M

(d)
2 M (d)r

M
(d)
1 M

(d)
2 M

(d)

0



 (0, τdM
(d)
1 M

(d)
2 M (d)). (4.28)

This scalar coupling with sL = 1 appears from ten-dimensional super Yang-Mills theory

and satisfies the relation Yijl̄m̄ = Yijk̄(Y )∗
kl̄m̄

for the three-point coupling Yijk̄ in eq. (3.12).

5 Intersecting D-brane models

Here we give comments on the relation between the results in the previous sections and

higher order couplings in intersecting D-brane models, i.e. CFT-calculations.

There is well-known T -duality relation between magnetized and intersecting brane

models. In intersecting brane case, the wavefunctions are highly localized around inter-

section points, whereas magnetized brane wavefunctions are fuzzily delocalized over the

entire space.

Under the ‘horizontal’ duality with respect to real axis, Xz ↔ 2πα′Az. The parameter

is changed as

τ ↔ J, ζ ↔ ν. (5.1)

Still the translational offset ν is the Wilson line. Thus, the magnetic flux gives the slope

Ai
z̄ = − i

2F
i
zz̄z = π

ImτMi and the corresponding quantum number is the ‘relative angle,’ for

small angles,

πθi =
Mi

ImJ
. (5.2)

The selection rule due to the gauge invariance becomes

M1 +M2 = M3 ↔ θ1 + θ2 = θ3. (5.3)

In the intersecting brane case, as well as heterotic string case, there have been CFT

calculation of higher order amplitude [22, 24, 27] using vertex operator insertion [21, 23,

25, 31]. There are vertex operators Vi corresponding to massless modes. We compute their

L-point amplitude,

〈V1V2 . . . VL〉. (5.4)

We have operator product expansion (OPE),

Vi(z)Vj(0) ∼
∑

k

cijk

zhijk
Vk(0), (5.5)

with hijk = h(Vk) − h(Vi) − h(Vj), where h(Vl) is the conformal dimension of Vl. This

OPE corresponds to (2.9). Furthermore, the coefficients cijk correspond to the three-point
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couplings in four-dimensional effective field theory. In ref. [7], it is shown that the above

three-point coupling cijk in intersecting D-brane models corresponds to the T-dual of the

three-point couplings Yijk in magnetized D-brane models.

Now, let us consider the L-point amplitude 〈
∏

i Vi(zi)〉. We use the OPE (5.5) to

write the L-point amplitude in terms of (L − 1) point amplitudes. Such a procedure is

similar to one in the previous sections, where we write L-point couplings in terms of three-

point couplings.

For example, the CFT calculations for the four-point couplings cijkl in the intersecting

D-brane models would lead

cijkl ∼
∑

s

cijs̄cskl, (5.6)

and

cijkl ∼
∑

t

cikt̄ctjl, (5.7)

depending on the order of OPE’s, i.e. s-channel or t-channel. Thus, the form of the four-

point couplings as well as L-point couplings (L > 4) is almost the same as the results in

the previous sections. Note that in eq. (2.9), a product of two wavefunctions is decomposed

in terms of only the lowest modes. On the other hand, in r.h.s. of eq. (5.5), higher modes

as well as lowest modes may appear. However, dominant contribution due to the lowest

modes are the same, because cijk for the lowest modes (i, j, k) corresponds exactly to Yijk

for the lowest modes.

Let us examine the correspondence of couplings between magnetized models and in-

tersecting D-brane models by using concrete formulae. In the intersecting D-brane models,

the amplitude (5.4) is decomposed into the classical and the quantum parts,

〈V1V2 . . . VL〉 = Zqu · Zcl = Zqu ·
∑

{Xcl}

exp(−Scl), (5.8)

where Xcl is the solution to the classical equation of motion. The classical part is formally

characterized as decomposable part and physically gives instanton of worldsheet nature,

via the exchange of intermediate string. That gives intuitive understanding via the ‘area

rule’, where the area corresponds to one, which intermediate string sweeps.

In the three-point amplitude, the summation of the classical action
∑

{Xcl}
exp(−Scl)

becomes the theta function [31], where Scl corresponds to the triangle area. When we

exchange τ and J as (5.1) in the magnetized models, the Yukawa coupling (3.6) corresponds

to the following expansion

yijk̄ = ϑ

[

M2k−M3j+M2M3l
M1M2M3

0

]

(

0, iM1M2M3A/(4π
2α′)

)

=
∑

n∈Z

exp

[

−
M1M2M3A

4πα′

(M2k −M3j +M2M3l

M1M2M3
+ n

)2
]

,

(5.9)

by using the definition (2.7). We have neglected the antisymmetric tensor component B.

The exponent corresponds the area (divided by 4πα′) of possible formation of triangles and
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Figure 5. Area of polygon, responsible for the classical part exponent, is decomposed in terms of

those of three point functions.

the one with n = 0 corresponds to the minimal triangle. Recall that the theta function

part depends only τ and J in magnetized and intersecting D-brane models, respectively.

We have omitted the normalization factor, corresponding to the quantum part Zqu. It

is obtained by comparing the coupling (5.9) with (3.12). We find the factor

2−9/4π−3eφ4/2
3
∏

d=1

(

Imτd
M

(d)
1 M

(d)
2

M
(d)
3

)1/4

, (5.10)

in the magnetized brane side corresponds to

Zqu = (2π)−9/4eφ4/2
3
∏

d=1

(

(ImJd)
2 θ

(d)
1 θ

(d)
2

θ
(d)
3

)1/4

, (5.11)

in the intersecting brane side. We obtain the four dimensional dilaton φ4 = φ10 −

ln |Imτ1Imτ2Imτ3| from the ten dimensional one φ10, which is related with gYM as gYM =

eφ10/2α′3/2. The vacuum expectation value of the dilaton gives gauge coupling e〈φ4〉/2 = g.

In this case, the factor containing the angles is a leading order approximation of the ratio

of Gamma function
Γ(1 − θ1)Γ(1 − θ2)Γ(θ3)

Γ(θ1)Γ(θ2)Γ(1 − θ3)
≃
θ1θ2
θ3

, (5.12)

valid for small angles. Therefore, the three-point couplings coincide each other between

magnetized and intersecting D-brane models. That is the observation of [7].

Now, let us consider the four-point coupling of intersecting D-brane model correspond-

ing to the left figure of figure 5. The four-point amplitude is written as (5.8), where the

classical action corresponds to the area of the left figure. However, that can be decomposed

into two triangles like the right figure, that is, the classical part can be decomposed into

two parts, each of which corresponds to the classical part of three-point amplitude, i.e.

exp(−S
(4)
cl ) = exp(−S

(3)
cl ) exp(−S′(3)

cl ), (5.13)

where S
(4)
cl corresponds to the area of the left figure of figure 5 and S

(3)
cl and S′(3)

cl correspond

to the triangle areas of the right figure.

On the other hand, our results in the previous sections show that the four-point cou-

pling in the magnetized model is also expanded as (4.6). Each of theta functions in (4.6)

corresponds to the classical parts of the three-point couplings in the intersecting D-brane
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models. This relation corresponds to the above decomposition (5.13). Thus, the theta func-

tion parts of the four-point couplings, i.e. the classical part, coincide each other between

magnetized and intersecting D-brane models. That means that the holomorphic complex

structure, τ , dependence of the four-point couplings in the magnetized brane models is the

same as the holomorphic Kähler moduli J dependence in the intersecting D-brane models,

since the theta function part in the magnetized (intersecting) D-brane models depends only

on τ (J). The other part in the magnetized brane models corresponds to normalization

factors NM . When we take a proper normalization, these factors also coincide.

6 Conclusions

We have calculated three-point and higher order couplings of four-dimensional effective

field theory arising from dimensional reduction of magnetized brane models. We have

found that higher order couplings are written as products of three-point couplings. This

behavior is the same as higher order amplitudes of CFT, that is, higher order amplitudes

are decomposed as products of three-point amplitudes in intersecting D-brane models.

Our results on higher order couplings would be useful in phenomenological applications.

Numerical analysis on higher order couplings is also possible.
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